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ABSTRACT 

TOWARD A MEDICAL TRICORDER: 
MACHINE LEARNING AND MICROFLUIDICS IN POINT-OF-CARE DIAGNOSTIC 

DEVICES 

by Paolo Arguelles 

CHAPTER 1             

 The medical tricorder is introduced within the context of humanitarian use. The 

three subsystems of a medical tricorder-like diagnostic device are identified: recording, 

sensing, and analysis. In this chapter, three technologies that will help realize the 

implementation of these three subsystems in inexpensive, point-of-care applications are 

presented: paper microfluidics, artificial intelligence, and digital microfluidics. The 

structure of this thesis is discussed within the context of these three technologies. 

CHAPTER 2            

 This chapter consists of an introduction to microfluidic theory and modeling. The 

forces that govern passive microfluidic flow and capillary action are discussed. In this 

chapter, Darcy’s Law governing passive fluid flow and Ohm’s Law governing the 

passage of electrons through a conductive medium are shown to be analogous through a 

series of mathematical derivations. The parallelism between the functional behavior of 
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complex microfluidic networks and electronic circuits is therefore demonstrated. This 

chapter concludes that complex microfluidic networks may correctly be modeled using 

circuit components, and are subject to the same analysis techniques that govern electronic 

circuit systems. 

CHAPTER 3            

 Low-cost, paper-based analytical devices that use chemical color change as an 

indicator of glucose concentration are especially useful in resource-limited areas. 

However, while users may make a qualitative self-diagnosis through color change, they 

lack the ability to make a more accurate, quantitative determination without the use of a 

spectrophotometer, an instrument used to measure color. In this research, artificial neural 

network-(ANN) based analytics are used to supplant the need for expensive 

spectrophotometric instrumentation. Color values resulting from a glucose color change 

reaction in two platforms, namely paper-based analytical device (µPAD) and paper/

thread-based analytical device (µTPAD), were fed into classification and fitting ANNs. 

For the classification ANN, positive identification rates of 91.2% and 94.4% were 

achieved for the µPAD and µTPAD platforms, respectively. For the fitting ANN, it was 

found that the network yielded Pearson correlation coefficients of 0.97 and 0.96 for 

µPAD and µTPAD, respectively, indicating excellent ANN predictive capability for both 

platforms. 
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CHAPTER 4            

 Scholarly discussion of the realization of logic gates in microfluidic networks 

often involve their active implementation through the use of bubble logic or peristaltic 

micro-pumps. In this chapter, a method for implementing logical operations on 

microfluidic networks passively is described. The behavior of a passive half-adder is 

realized using basic acid-base stoichiometry and phenolphthalein indicator. Color is 

toggled by continuously and strategically breaching the pH threshold at which 

phenolphthalein turns pink. The absence or presence of color (logic-0 and logic-1, 

respectively) is interpreted as a binary system. Preliminary results conducted in an ideal 

mixing scenario are detailed, and a vision of a passive microfluidic-based calculator 

presented. 

CHAPTER 5            

 The field of digital microfluidics is introduced, and a novel digital microfluidic 

paper-based analytical device (DµPAD) proposed. In the present research, 

photolithographic etching methods were used to create electrode arrays. Commercially 

available hydrophobic spray was applied onto a Parafilm dielectric to facilitate smooth 

droplet actuation over the electrode array. In this research, circuit etching and 

hydrophobic coating methodologies were perfected, and procedures described. The 

droplet actuation voltage associated with the electrode array preparation methods 

described herein was found to be +200 VDC. An array of logic-level BSP89 power 
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metal-oxide-semiconductor field-effect transistors (MOSFETs) were used to control a 

+200 VDC bus line to each electrode. Switching states are controlled over the +5 VDC 

logic bus on an Arduino Uno. Future applications of electrowetting-on-dielectric 

(EWOD) based technology are described, including possible integration with a paper-

based enzyme-linked immunosorbent assay (ELISA). 
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CHAPTER 1. 

INTRODUCTION 

1.1. THE MEDICAL TRICORDER 

1.1.1. Device Structure 

 Originally the product of popular science fiction, the real world implementation of 

the medical tricorder constitutes one of the most coveted prizes for biomedical and 

electrical engineers [2, 6]. The fabled device is depicted to non invasively scan biological 

specimens and diagnose conditions such 

as arrhythmia, diabetes, and sleep apnea 

[9]. The medical tricorder, short for tri-

functional recorder, is named for the three 

functional subsystems that comprise the 

device: sensing, analysis, and recording. 

The sensing subsystem is concerned with 

the development of novel sensing methods, and miniaturized, biocompatible sensors and 

sensing arrays; analysis with the signal processing methods and algorithms to facilitate 

accurate diagnostic capability; and recording with data storage methods and circuitry to 

enable high sampling rate, multivariate, multi-channel recording. This thesis focuses 

primarily on the development of techniques supplement sensing and analysis. 

 1

Figure 1.1.  The medical tricorder as seen in 
the original Star Trek television series



1.1.2. Humanitarian Uses 

 This research work is motivated by a humanitarian element, specifically the 

potential use of this device in resource-limited areas, regions of the world loosely defined 

here as those that do not have the benefit of a robust health care infrastructure. The need 

for a point-of-care diagnostic device designed for use in these areas is especially evident 

considering that approximately 60% of the world’s population lives in resource-limited 

areas [4]. Figure 1.1 depicts the distribution of global wealth, with countries resized 

according to their 2018 GDP. Wealth has been shown to act as an indicator of that 

country’s ability to support a vast, robust medical infrastructure [3, 5]. A 2010 report by 

the World Health Organization paints a dire picture of the financing of health care 

infrastructure in rural Africa: 
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Figure 1.2.  Rural regions of central Africa disappear in this geographic projection of global 
2018 GDP.



The financing of healthcare in Africa remains a patchwork of meagre public 

spending, heavy reliance on foreign donors and a large dependence on out-of-

pocket contributions and user fees that place the greatest burden on the poorest 

members of society [1]. 

 Given a clear need for inexpensive, yet robust medical diagnostic capability in 

resource-limited areas, this thesis will discuss technologies that will support the creation 

of a medical tricorder-like point-of-care diagnostic device designed specifically for such 

regions. Toward this end, such a device should not only be able to provide quality, 

accurate diagnoses, but do so while minimizing expense. Recent advances in paper-based 

microfluidics and machine learning provide support for the inexpensive implementation 

of the sensing and analysis subsystems, respectively, of point-of-care diagnostic 

instrumentation [15-24]. Chemical sensors and assays may be fashioned out of 

chemically enriched paper and wax for only a few cents [8-14], making such platforms 

ideal for use in resource-limited areas [7]. Similarly, machine learning algorithms may be 

accessed by regional caregivers over the internet. The integration of these two disciplines 

constitutes the main area of this thesis. 

1.2. THESIS OVERVIEW 

 This thesis is built upon advances in three emergent technologies that: paper 

microfluidics (PMF), digital microfluidics (DMF), and artificial intelligence (AI). The 
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letter combinations in parentheses indicate which technologies are addressed in each 

chapter. 

 CHAPTER 1 consisted of an introduction to the medical tricorder, and the 

importance of inexpensive, point-of-care diagnostic systems in resource-limited areas.  

 CHAPTER 2 discusses microfluidic theory and the modeling of active and passive 

microfluidic networks as electrical circuits. 

(Technologies: PMF) 

 CHAPTER 3 will consist of an application of machine learning techniques to a 

problem in microfluidics and point-of-care diagnostics. In particular, artificial neural 

networks (ANN) are used to evaluate colorimetric data from a completed assay and 

predict the corresponding glucose concentration. 

(Technologies: PMF, AI) 

 CHAPTER 4 discusses the implementation of simple logical operations onto 

passive microfluidics. Additionally, the theoretical operation of a half adder circuit is 

related to microfluidic network topology. 

(Technologies: PMF) 

 CHAPTER 5 proposes a microfluidic paper analytical device with digital 

microfluidic capability. The electrowetting-on-dielectric (EWOD) is described, and 

applied to microfluidic devices. An enzyme-linked immunosorbent assay (ELISA) 

employing this capability is discussed. 

(Technologies: PMF, DMF) 
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CHAPTER 2. 

MICROFLUIDIC THEORY AND MODELING 

2.1. MICROFLUIDIC THEORY 

 Microfluidics is a field of study having to do with the manipulation of fluid 

volumes on the order of nanoliter (10-9) to picoliter (10-12) aliquots on or within a 

substrate [8]. Passive microfluidic systems, such as those implemented on paper or 

thread, are characterized by capillary action, or the ability of a fluid to flow within a 

porous medium against the wishes of external forces such as gravity, as the primary 

driver of fluidic flow [9]. Passive microfluidics will be the primary focus of the thesis. 

For a conventional porous medium, the volume of fluid wicked from a reservoir through 

capillary action over time is expressed as a decaying exponential: 

!  

where Vabsorbed is the volume of liquid absorbed after a time t, and A is the cross-sectional 

area of the wicking material. A proportionality constant S is defined as the sorptivity of 

the material [11]. 

 The most fundamental relationship governing passive fluidic flow in porous 

media was found in the context of hydrogeology [2]. Henry Darcy studied the dynamics 

of groundwater flow through sediment, formulating his namesake relation 

! .  

Vabso rbed ∝ A t

q ∝ − ∇p

 7

(2.1)

(2.2)



Darcy’s Law states that fluid flow flux q in m/s is inversely proportional to the pressure 

gradient  in Pa/m2, leading to two trivial conclusions: 

1. Fluidic flow occurs in the direction of high to low pressure. 

2. The larger the pressure difference, the greater the fluid flow. 

Darcian fluid flow flux can be used to compute the Reynold’s number for passive flow, 

given by 

!    

where !  is fluid density ( !  g/mL for water), q is the Darcian fluid flow flux derived 

in Equation 2.2, and d is the average “grain size” for the porous medium. For 

microfluidic systems implemented passively on paper and thread, or actively on PDMS, 

!   

where !  represents perfectly laminar flow. It is generally assumed that the Reynolds 

number in microfluidic chips is negligible, and that fluidic flow is laminar. Two of the 

quantities describing fluid flow dynamics, namely flux and velocity are related by 

porosity !  as follows 

! . 

When implementing a circuit model equivalent for microfluidic systems, a channel is best 

modeled as a resistor, with resistance analogous to porosity. Parallels may immediately be 

drawn with Ohm’s Law in its original formulation: 

∇p

ℛpassive = ρqd
μ

ρ ρ = 1

ℛpassive ⪅1.0

ℛ = 0

Φ

Φ = q
ν

 8

(2.3)

(2.4)

(2.5)



!   

where J is current density in A/m2, and E is electric field strength in V/m. The most 

famous version of Ohm’s Law as modified by Gustav Kirchhoff, given by 

 !  

shows an inverse linear correlation between the resistance of a wire and the current 

flowing through it. For a length of ideal wire, resistance R is given by 

!   

where !  is the resistivity of the material from which the wire is made (for copper, 

! ), L is the length of the wire and A is cross-sectional area. More 

generally, the following relationship between resistance and wire dimensions can be 

extracted: 

!   

When resistance is replaced with porosity, the same relationship holds for a porous 

medium with a low Reynolds number [2]: 

!   

For paper microfluidic systems, the physical interpretation of porosity is dictated by the 

amount of wax melted into the paper. When designing paper microfluidics on vector 

σ = J
E

R = V
I

R = ρL
A

ρ

ρCu = 1.7 × 10−6 Ωm

R ∝ L
A

Φ ∝ L
A

 9

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)



illustration software, this porosity is controlled by the opacity of the region. A region with 

100% opacity (wax barrier, completely opaque) is analogous to an infinite, or very high, 

resistance, while a region with 0% opacity (no wax printed, completely clear) 

corresponds to an ideal wire with zero resistance. A helpful analogy is that the opacity 

percentage value indicates the extent to which floodgates are open to allow a deluge to 

flow within a canal. Here, the water corresponds to fluidic flow, the floodgates to the 

porosity of the regions, and the canal to the porous micro-channel. 

2.1.1. Circuit Equivalent Models of Microfluidic Networks 

 While it was shown that resistance can be used to model paper microfluidic 

micro-channels, other circuit components can be used to model more complex 

microfluidic chip topologies. Circuit equivalent models of the cardiovascular system, for 

instance, incorporate inductance, a circuit component used to simulate the inertia of 

blood as it travels through the vasculature, as follows: 

!  Lvessel = 9lρ
4A

 10

(2.11)

Figure 2.1.   Fluidic flux Q is a function of cross-sectional area A and length L. The dependence 
of flux on dimensions substrate is mirrored in the electron current flow of an ideal wire, shown 
in Equations (2.9) and (2.10). (Attrib.: Peter Kapitola)



where !  is the density of blood [1]. It should be noted that for microfluidic systems using 

fluids with low viscosities, or that are under the influence of a constant propulsive vector, 

inductance plays a negligible role in determining that system’s circuit equivalent. In 

general, for microfluidics implemented actively on PDMS, or passively on paper and 

thread substrates, fluid inertia is not an important contributor to the behavior of the 

system. On the other hand, capacitance is used to model the compliance or elasticity of 

the blood vessel wall: 

!    

where r and l are blood vessel radius and length respectively, E is Young’s modulus, and 

w is the blood vessel wall thickness [1].  

 Consider an ideal section of compliant tubing. While the relationship between the 

difference in fluid flux F and the difference in pressures P at the input and output is 

nonlinear, for a channel exhibiting laminar flow, these two quantities may be taken to be 

directly proportional: 

! . 

Differentiating both sides,  

!   

and defining a new variable A, denoting the change in flux, 

!   

ρ

Cvessel = 3lπr3

2E w

F ∝ P

dF
dt

∝ dP
dt

A = dF
dt

 11

(2.12)

(2.13)

(2.14)

(2.15)



it may be written: 

!   

where k is some proportionality constant. Now, recall the behavior of a current I through 

a capacitor: 

!    

where C is the capacitance, and V is the voltage across the capacitor. Notice the similarity 

in form between the two previous equations. This equivalence shows that a capacitor may 

be used to model a channel that changes its dimensions based on fluidic flow. 

 Given the equivalencies between microfluidic systems and electronic circuitry, it 

is conceivable that active microfluidic systems can perform any logical operation an 

electronic circuit can [4, 5, 7, 10]. The microfluidic implementation of logic gates is 

discussed in Chapter 3. However, PDMS micro-channels and wax channels printed onto 

paper are usually not subject to such compliance. These networks can be sufficiently 

modeled using a network of voltage sources and resistors [6, 8]. For PDMS-based 

microfluidics that use peristaltic pumps or some other method of external actuation of 

fluid flow, a time-dependent voltage source is suitable [3]. For simple, passive, paper- 

and thread-based microfluidic platforms such as those discussed in this thesis, a constant 

DC voltage source may be used to describe pressure gradients that govern fluidic flow via 

capillary action in the system [6]. 

A = k
dP
dt

I = C
dV
dt

 12

(2.16)

(2.17)



2.1.2. Applying Circuit Analysis to Microfluidic Networks 

 According to Ampere’s and Gauss’s Laws, charge within an isolated system is 

always conserved. A consequence of this conservation of charge, Kirchhoff’s Current 

Law (KCL), is given by 

!  

where I is the current through branch n and the total number of branches entering a 

junction is N. KCL states trivially that the summation of all currents entering a junction 

must equal zero. For active microfluidic systems implemented on PDMS, such circuit 

laws can be used to model fluid behavior given channel topology [6, 7]. Conversely, 

circuit analysis methods may be used to optimize microfluidic channel topology to 

achieve a desired fluid behavior. KCL may be rewritten in terms of microfluidic networks 

using fluid flux Q: 

!  

Another consequence of the conservation of charge is Kirchhoff’s Voltage Law (KVL), 

given by: 

!  

KVL states that the algebraic sum of all voltage drops in a closed path equal zero. Since 

voltage is analogous to pressure in microfluidic networks, KVL may be rewritten in this 

context as: 

!  

∑ In = 0

∑ Qn = 0

∑ Vn = 0

∑ Pn = 0
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(2.18)

(2.19)

(2.20)

(2.21)



The theoretical equivalence Kirchhoff’s Laws to microfluidic networks render the latter 

able to be analyzed with the same tools and methods used to conduct circuit analysis, 

save for a few conceptual adjustments. As such, software normally reserved for electrical 

engineering and circuit analysis (i.e., PSpice, LTSpice, Simscape Electronics) may be 

used to model time-dependent microfluidic behavior on a macroscopic scale.  

 14

Figure 2.2. A microfluidic network (left) and its corresponding circuit 
model equivalent (right)  [6]
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CHAPTER 3. 

MACHINE LEARNING IN PAPER MICROFLUIDICS 

3.1. INTRODUCTION  

3.1.1. Artificial Neural Networks (ANN) 

 Inspired by the biological workings of the brain, an artificial neural network 

(ANN) is an interconnected group of electronic nodes that performs decision-making 

functions [5]. ANNs may be seen as a kind of artificial intelligence [1-3]. The simplest 

artificial neuron is called a perceptron, an algorithm that outputs either 1 or 0 based on a 

series of input variables. For instance, consider a typical yes or no decision: going to the 

gym. This decision depends on the consensus of multiple variables. A few contributing 

factors might be weather x1, mood x2, and time of day x3. These variables may be fed into 

a perceptron as follows: 

One may consider their mood to contribute more to their decision than weather or time of 

day; greater weight is applied to this variable over the others. The weighted sum is then 

introduced to the Heaviside step function which acts as follows: if the weighted sum 

exceeds a certain threshold, the perceptron will output a 1 (analogous to the firing of a 
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Figure 3.1. Schematic of a simple three-
input perceptron



neuron); otherwise, the perceptron will remain inactive, outputting a 0 [6]. By altering the 

shape of the activation function from a sharp, discontinuous step to a smoothed out curve, 

more subtle decisions (as opposed to a discrete yes or no decision) can be made. One 

such curve shown in Figure 3.3 is a sigmoid function, characterized by ! . 

In conventional ANNs, the sigmoid function, or a similar-shaped curve, is used as the 

activation function. By creating an interconnected network multiple sigmoid neurons, and 

f (x) = 1
1 + e−x
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Figure 3.3. Plot of the sigmoid 
activation function

Figure 3.2. Plot of the Heaviside step 
function



adding multiple layers of neurons to mimic abstract thought, very complex decisions may 

be made based upon hundreds of input factors. 

To train the ANN, a database of input and output data is introduced to the system. 

In a training algorithm called “backpropagation,” the error (the difference between the 

actual output and the expected output) is calculated and “backpropagates” to earlier 

neurons, whose weights are then adjusted accordingly. This is procedure is performed 

multiple times to minimize error. 

3.1.2. Microfluidic Paper- and Paper/Thread-Based Analytical Devices 

Low-cost medical diagnostic devices may be fashioned out of paper, wax, thread, 

and tape. For microfluidic paper-based analytical devices (µPADs) hydrophobic channels 

can be created using wax printers and paper. When a desired design is printed onto paper, 

a heat press dissolves the wax into the paper, creating hydrophobic barriers that constrain 

fluid flow within the paper. Other topologies may be explored, such as microfluidic 

paper/thread-based analytical devices (µTPADs); channels are created by pieces of thread 

that allow fluids to propagate to different test areas. 

In this chapter, ANNs will be applied to the colorimetric determination [14, 15] of 

glucose concentration in an artificial urine solution. The objective of the machine 

learning program is to learn the highly nonlinear relationship [4] between color and 

glucose concentration, and output a glucose concentration value given a set of color 

inputs. The input solution consists of a cocktail of horseradish peroxidase (HRP), 
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potassium iodide (KI), and glucose oxidase (GOx). The capillarity of the paper allows the 

input solution to flow onto each of the test areas containing predetermined concentrations 

of glucose in an artificial urine solution, facilitating a color change reaction. Depending 

on glucose concentration, the test area will assume different shades of yellow at varying 

saturation levels—clear to pale yellow for low glucose concentrations, and dark brown 

for high concentrations. 

3.1.3. Using ANN to Aid Color-Based Diagnostics 

The challenges of achieving highly accurate colorimetric analytical capability in 

paper-based assays without the aid of expensive color-detecting instruments such as 
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Figure 3.4.  The nonlinear, sigmoidal relationship between  
yellow channel intensity and glucose concentration



spectrophotometers highlight the benefits of a machine learning-based approach to such 

problems. Firstly, the highly nonlinear nature of the relationship between color data and 

concentration is one that ANNs manage well. Considering only the inverse color intensity 

of the yellow channel, the calibration curve associated with this color change reaction is 

nonlinear and sigmoidal. 

By training an ANN not only on this data, but also the three other color channels 

in the CMYK color space (cyan, magenta, and key), a more robust relationship between 

color change and associated glucose concentration may theoretically be developed. 

Secondly, unlike pH strip tests, where color variability is high when testing for 

acidity or basicity of a solution, this particular color change presents much more muted 
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Figure 3.5. Most color 
change occurs along the 
yellow color channel in this 
reaction.



variability. Glucose concentration color change is manifested colorimetrically primarily 

as a longitudinal change along one color [yellow] color channel as opposed to transverse 

across multiple color channels. In addition for it being difficult for users to visually 

interpret the results of the test, such a test also makes room for cross-entropy, meaning 

that close inputs yield very similar outputs. 

Colorimetric analysis will be performed using ANNs that can provide a “best-

guess” concentration value to an image of a colorimetric test strip based on a 

comprehensive database of sample images and corresponding concentration values. 

This project was motivated by the need for immediate, electronic readout on 

colorimetric-based assays. Sending the color inputs through an ANN will enable the 

program to detect minute patterns and changes in variability unapparent to both the 

human eye and deterministic analytical approaches. This approach presents many 

advantages, one of which is high scalability. Once trained on a large enough dataset, 

ANNs may be implemented in code and distributed on mobile smartphone platforms. 

This is especially helpful when using the smartphone as an analytical device in resource-

limited areas. The program can also be trained in real time, based on an ever-expanding 

dataset. The more the program is used the smarter it gets, and the lower the error rate. 

This platform will eventually get to a point where a patient would simply take a snapshot 

of a recently completed paper-based microfluidic assay. The smartphone would then be 

able to output the corresponding concentration. Achieving this would mean the 

overcoming of several obstacles, for instance, controlled lighting conditions—the 

 22
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slightest variation of which may influence the outcome. For the purposes of this research, 

a scanner is employed to provide controlled lighting. However, any step beyond this point 

would require additional algorithms to normalize lighting conditions. A method to 

mitigate varying lighting conditions is the “Experimental Methods” section. 

3.1.4. Existing Work 

 Léon, et al. describe a method to evaluate food quality through colorimetric 

analysis [4]. The method described here makes use of MATLAB ANNs to facilitate a unit 

conversion from RGB to L*a*b color space. This methodology is mentioned here as a 

means by which a computer may autonomously use computer vision to extract relevant 

test areas from a chip. However, for the purposes of this research, this phase was skipped 

in favor of manual selection of test areas from scanned images. The ANN methodology 

used in this project is similar to that of Zhang, et al. to implement an artificial, 

colorimetric “nose” through a neural network-based pattern recognition (classification) 

algorithm to analyze concentrations of NH3 [8]. This paper detailed two classification 

algorithms: linear discriminant analysis (LDA) and ANN, the former being a 

deterministic machine learning algorithm. A similar analysis was performed for this 

research. However, it was shown that ANN consistently produced higher positive 

identification rates than the deterministic models. Zhang’s methodology notably uses 

color change, not color, as its input vector. This idea was adopted in this research, as 
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using raw color values may render the neural network more susceptible to cross-entropy 

due to differing initial conditions across chips. 

3.2. EXPERIMENTAL METHODS  

3.2.1. Normalizing Color and Lighting Conditions 

To ensure properly controlled lighting conditions for colorimetric analysis, 

lighting conditions should first be normalized across samples. To achieve this, assay 

image acquisition should be performed with a color reference card, such as a true black or 

18% gray middle reference card. This helps normalize nonstandard lighting conditions 

and set the white balance point of the analysis before introduction to the neural network. 

Dozens of tests will be conducted associating color variations and hues with 

concentration values. A picture will be taken of each assay. These photos will then be 

imported into the MATLAB Training Image Labeler app, where each test area on the 

 25

Figure 3.7. A manually labeled image of a microfluidic test strip/
array



assay will be manually highlighted (Figure 3.7). Once a robust database of around one 

hundred labeled images has been built, the collected data may then be exported and used 

to train a neural network to identify test areas and automatically extract color data from 

the regions of interest. Colorimetric analysis may then be performed on each individual 

test area using the method described in Léon, et al. Alternatively, a document scanner 

with all computer-aided color correction features disabled works just as well. For this 

method, assays are scanned with a high quality scanner. The scans are then imported into 

Adobe Photoshop, where each region of interest is manually selected and color data 

extracted and averaged. This “brute-force” approach to color data extraction was used for 

this project. 

3.2.2. Artificial Neural Network Training Methodology 

 Mean 16-bit color values from each of the four color channels in the CMYK 

histogram were extracted into an Excel spreadsheet using Adobe Photoshop. For each 

chip, the average CMYK color values from the 0 mM control test area were then 

subtracted from the other test areas each yielding four-component vectors of form 

! for each test area, where !  and 

! . The spreadsheet used to train the neural networks consisted 

of 160 and 54 data points for the µPAD and µTPAD, respectively. 

The artificial neural networks were implemented using the Neural Network 

Toolbox (v9.1) in MATLAB R2016b (v9.1.0.441655). For each of the two proposed chip 

ΔCMYKi = < ΔC, ΔM, ΔY, ΔK > ΔC = Ci − C0

ΔCMYK0 = < 0,0,0,0 >
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platforms (i.e. µTPAD and µPAD), two analyses were performed: fitting and 

classification. In all cases, seventy percent of the data points were allotted for a training 

sample, fifteen percent for a validation sample, and the remaining fifteen percent for an 

independent testing sample. 

 For fitting problems, the objective of the neural network is to predict a 

concentration value given a four-component input vector containing the test area CMYK 

color data. To achieve this, a two-layer feed-forward neural network with 30 hidden 

neurons (determined by trial and error to produce the most optimal results) was 

implemented in MATLAB and trained on an input matrix of size 4 × N (where N = 
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Figure 3.8. Neural network topology for regression



dataset size; 160 for µPAD, 54 for µTPAD) consisting of CMYK color data, and a target 

matrix of size 1 × N consisting of the corresponding known concentration values. 

 The topology of the fitting ANN (Figure 3.8) accepts a four component color 

vector of form ! as input. 

The inputs were then passed on to four passive nodes acting as simple information 

buffers. Information then flows from the input layer to a hidden layer with a 

predetermined number of hidden neurons, 60 in this case. Each input node is connected to 

all neurons in the hidden layer.  

 Each hidden neuron, upon accepting inputs from the input layer, multiplies each 

input by a weight and adds a bias (usually of unity value) to the product. The sum is then 

sent through a sigmoidal activation function, as shown in Figure 3.9. In MATLAB, the 

sigmoidal function used is the hyperbolic tangent or tanh(x) function. 

ΔCMYKi = < ΔC, ΔM, ΔY, ΔK > = < XC, XY , XM, XK >
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Figure 3.9.  Internal block diagram for an active, hidden layer node



 Each hidden layer neuron is connected to an output layer neuron. The size of the 

output layer is determined by the number of desired outputs. In this case only one output, 

concentration value, is desired. Each output layer neuron, like the hidden layer neurons, 

multiplies its inputs by a certain weight, adds a bias, and sends information through an 

activation function. For linear regression or fitting problems, the activation functions for 

each output layer active neuron is the identity function, as seen in Figure 3.10. The output 

of this neuron represents the concentration prediction of the ANN.  

 T h e n e u r a l n e t w o r k e m p l o y e d a B a y e s i a n r e g u l a r i z a t i o n 

backpropagation algorithm to train the network for 1000 epochs. Throughout training, the 

weights were dynamically adjusted to best fit the input data to the target data. After 

training, the solution was deployed as a block into Simulink 7.0. One disadvantage of the 

fitting algorithm for this application is that it was highly possible for the system to output 

 29

Figure 3.10.  Internal block diagram for an active, output layer node in a linear regression problem



a value outside the set of known concentrations. For instance, the program may predict 

the concentration to be 12.38 mM instead of 12.5 mM. To restrict the output, the neural 

network block was placed in series with a custom MATLAB function block containing a 

script to discretize the output to the nearest known test strip concentration. For instance, 

raw outputs of 12.38 mM, 11.9 mM, and 13 mM were discretized to 12.5 mM. A custom 

graphical user interface (GUI) was developed in Simulink to output the raw prediction, its 

discretized (adjusted) value, and the percent error for each. 
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Figure 3.11. Custom Simulink GUI for fitting problem



 The performance of the ANN fitting algorithm was quantified using the Pearson 

correlation coefficient (R), or R-value, which provides a measure of linear dependence 

between two variables. The correlation coefficient may assume any value between -1 and 

1, inclusive. R-values of -1, 0, and 1 indicate perfect negative, independent, and positive 

correlations, respectively. This metric was used to provide a quantifiable measure of 

success for the Bayesian backpropagation algorithm used to train the ANN to predict 

glucose concentration based on color data. 

 The performance of ANNs applied to fitting problems such as this may be 

represented by scatter plots, shown in Figures 3.14A and 3.14B. Each data point on the 

plot indicates a prediction made by the ANN. The location of a data point along the 

horizontal axis labeled “Target” indicates the “true” glucose concentration of the analysis 

site, while the location along the vertical axis labeled “Output” indicates the glucose 

concentration guessed by the ANN. For an ANN with perfect predictive capability, the 

“Output” values equal the “Target” values, and all data points will reside on the “Y = T” 

identity line, represented by the dotted line on the scatter plot. The Pearson correlation 

coefficient for a perfect ANN is R = 1.  

 For classification problems, the task of the neural network is to determine to 

which one of the following three arbitrarily defined classes a given test area belongs 

(Class 1: 0 mM, 0.5 mM, 1 mM; Class 2: 3 mM, 4.5 mM, 6.5 mM; or Class 3: 12.5 mM, 

10 mM, 15 mM). To achieve this, a two-layer feed-forward neural network with sixty 

hidden neurons was implemented in MATLAB and trained on an input matrix of size 4 × 
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N consisting of CMYK color data, and a binary target matrix of size 3 × N indicating the 

corresponding class. 

 The topology of a classifying ANN, shown in Figure 3.12, is identical to a fitting 

ANN, save for two main differences. First, each output neuron in a classifying ANN uses 

a softmax function as its activation function (Figure 3.3). The softmax function constrains 

each component of an output vector between 0 and 1, inclusive, and scales the values 

such that they produce a unity summation. For these reasons, the output of the softmax 

function may be seen as a probability distribution, an interpretation that is used for a 

classification ANN. 
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Figure 3.12. Neural network topology for classification



 The choice of sixty hidden neurons in this ANN topology was arbitrary, and based 

on trial and error. The neural network employed a scaled conjugate gradient 

backpropagation algorithm to train the network for about twenty epochs. The solution 

was deployed as a block into Simulink 7.0 and implemented as a custom GUI. The GUI, 

shown in Figure 3.13, displays the calculated probability for each class given an input 

vector. The ANN prediction is taken to be whichever class yields the highest probability. 

 The performance of the ANN classification algorithm was expressed through 

confusion matrices, square tables with dimensions C × C (where C is the number of 

possible classes into a dataset may be sorted) that represent the behavior of a classifier. 

For the 3 × 3 confusion matrices shown in Figures 3.14C and 3.14D, the rows indicate 

the three “Output” classes into which the ANN may place an analysis site, where the 
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Figure 3.13. Custom Simulink GUI for classification problem



columns indicate the analysis site’s corresponding true, or “Target” class. For instance, 

the “57” in the cell belonging to the first row and first column of the confusion matrix 

shown in Figure 3.14C indicates that the ANN classifier correctly classified 57 analysis 

sites belonging to Class 1 as Class 1 sites. The “3” in the cell belonging to the second row 

and first column of the confusion matrix in the same figure indicates that the ANN 

classifier misclassified three analysis sites belonging to Class 1 as Class 2 sites. The 

positive identification rate, or the ratio between number of samples correctly classified 
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and the number of total samples N, served as a metric to quantify the effectiveness of the 

classification algorithm.  

3.3. RESULTS AND DISCUSSION  

 The neural network-based prediction program proposed above has been proven to 

be effective, yielding positive classification rates in excess of 91% for classification 

problems (Figures 3.14C, 3.14D) and R-values in excess of 0.96 (Figures 3.14A, 3.14B; 

where 1 is perfect regression). 
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Figure 3.15. Internal block diagram of an active, output layer node in a 
classification problem



3.3.1. ANN Predictive Performance for µTPAD Platform 

 An ANN was trained on the four-channel CMYK color data from 54 µTPAD 

analysis sites to evaluate the ability of fitting and classification machine learning 

algorithms to deduce glucose concentration for a thread- and paper-based microfluidic 

platform. Figure 3.14B shows the Pearson correlation coefficient to be R = 0.96491, 

indicating a highly linearly dependent relationship between the two variables, and 

excellent ANN fitting performance. The confusion matrix shown in Figure 3.14D 

indicates that the ANN correctly classified 94.4% (51 of 54 samples) of µTPAD analysis 

sites, indicating excellent ANN classification performance. The ANN was able to 

correctly identify all Class 1 analysis sites, and made no errors distinguishing between 

Class 1 and Class 3 sites. Three errors, each with one instance of occurrence (each 

accounting for 1.9% of the total number of classifications), were made: misclassifying a 

Class 2 site as a Class 1 site, a Class 3 site as a Class 2 site, and a Class 2 site as a Class 3 

site. 

 As shown in Figure 3.14, for µTPAD, the performance of the ANN is 

approximated by the equation 

!   

where !  is the predicted concentration of the ANN, and !  is the actual 

concentration. The “T” subscript indicates that this relationship is specific to the µTPAD 

OutputT ≈ 0.94TargetT + 0.38

OutputT TargetT
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platform. To map the raw ANN outputs to the set of known µTPAD concentrations, the 

following operation is utilized 

!    

where function RoundTPAD is defined by 

!   

where z is a dummy variable representing the input of the function, and !  is a member 

of set !  containing all known concentrations (in 

mM) on the µTPAD platform. 

3.3.2. ANN Predictive Performance for µPAD Platform 

An ANN was trained on the four-channel CMYK color data from 160 µPAD 

analysis sites to evaluate the ability of fitting and classification machine learning 

algorithms to deduce glucose concentration for a 3D paper-based microfluidic platform. 

Figure 4A shows the Pearson correlation coefficient was R = 0.9739, indicating a highly 

linearly dependent relationship between the two variables, and excellent ANN 

performance. The confusion matrix shown in Figure 3.14C indicates that the ANN has 

correctly sorted 91.2% (146 of 160 samples) of the µPAD analysis sites. The errors the 

ANN was most likely to make were misclassifying a Class 2 site as a Class 1 site, which 

occurred in 3.1% (5 of 160 samples) of the data points, and misclassifying a Class 3 site 

as a Class 2 site, which occurred 2.5% (4 of 160 samples) of the data points. The ANN 

made no errors distinguishing between Class 1 and Class 3 sites. 

Adjusted OutputT = RoundTPAD(0.94TargetT + 0.38)

RoundTPAD(z) = {CT ∈ T | min (CT − z)}

CT

T = {0, 0.5, 1, 3, 4.5, 6.5, 10, 12.5, 15}
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 As shown in Figure 3.14, for µPAD, the performance of the ANN is approximated 

by the equation 

!   

where !  is the predicted concentration of the ANN, and !  is the actual 

concentration. The “P” subscript indicates that this relationship is specific to the µPAD 

platform. To map the ANN outputs to the set of known µPAD concentrations, the 

following operation is utilized 

!    

where function RoundPAD is defined by 

!    

where z is a dummy variable representing the input of the function, and !  is a member 

of set !  containing all known concentrations (in mM) 

on the µPAD platform. 

3.4. CONCLUDING REMARKS 

 The ability of a machine-learning approach to computationally interpret the 

results of thread/paper- and paper-based analytical devices has been demonstrated. 

Lapses in the ability of the ANN to form a representative and well-generalized 

relationship between four-channel CMYK data as system inputs and glucose 

concentration as system outputs may be attributable to the relative lack of color 

OutputP ≈ 0.93TargetP + 0.44

OutputP TargetP

Adjusted OutputP = RoundPAD(0.93TargetP + 0.44)

RoundPAD(z) = {CP ∈ P | min (CP − z)}

CP

P = {0, 0.5, 1, 3, 4.5, 6.5, 12.5, 15}
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variability in the observed color changes. This invariance results in high cross-entropy, 

limiting the pattern recognition capability of the ANN. However, a higher predictive 

resolution may be attained by chemically amplifying the color changes and training the 

ANN on a larger dataset. Of the two platforms analyzed, the µPAD is more practical for 

integration with ANN-based analytics due to the its high degree of reproducibility and 

speed of production, allowing for large training datasets to be built in short periods of 

time. 

 In many ways, the fields of microfluidics and machine learning are 

complementary; inexpensive and highly reproducible analytical devices can provide the 

large datasets needed for ANNs to function well. The relative low cost and ease-of-

reproducibility of the microfluidic devices described here combined with the high 

scalability of ANN-based algorithms through smartphone applications and other software 

deployment solutions make such a system ideal for rapid, POC diagnostics. 
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CHAPTER 4. 

PASSIVE LOGIC ON PAPER MICROFLUIDICS 

4.1. INTRODUCTION 

 The half-adder circuit forms the basis of all computational ability in a computer. 

The circuit is able to add together two 1-digit binary numbers (with no carry-in) and 

produce a sum bit S and carry-out bit Cout. Half and full adders have been implemented 

using a variety of media (e.g. Legos, K’nex, pinballs, string, etc.), most notably by stand-

up mathematician Matt Parker on the YouTube channel Numberphile, where a four-bit 

adder was demonstrated using dominoes in strategically placed configurations (Figure 
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Figure 4.1. A four-bit domino adder



4.1). Implementing any kind of complex logic in a paper-based microfluidic medium, 

however, is largely unprecedented. 

 The main advantage of microfluidic paper-based logic circuits is its passivity. 

Conventional logic circuits rely on an active flow of electrons. Even in microfluidics, 

many logic gates rely on active fluidic pumps for proper operation. However, passive 

circuits will allow logical operations to be performed without the need for an external 

electromotive force; such a circuit relies only on the intrinsic capillary properties of 

paper. 

 A half adder may be implemented structurally with circuits using an XOR gate 

and an AND gate (Figure 4.2). 
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Figure 4.2. Circuit diagram for a conventional half-
adder

Cout S in1 in0

0 0 0 0

0 1 0 1

0 1 1 0

1 0 1 1

Figure 4.3. Behavior for a half-
adder



There is literature describing the implementation of AND gates in microfluidics, but 

hardly any for implementing XOR gates using this platform. Furthermore, as previously 

noted, there is hardly any precedent for implementing logic gates, let alone half adders, 

on paper microfluidics. Channel size and capillary action also need to be taken into 

account, meaning that a half adder may not be implemented passively using the above 

design, as the paper substrate will likely run out of “fuel” before it could complete the 

operation. The adder must, therefore, be implemented functionally, not structurally, and 

be designed according to the behavior of the truth table in Figure 4.3. 

 Literature on implementing logic gates and half-adders in microfluidics is sparse, 

let alone implementation on paper microfluidic platforms. Cheow, et al. present a method 

for implementing two-input AND/OR gates and one-input NOT gates on 

polydimethylsiloxane (PDMS) substrate by varying channel width [3]. Prakash and 

Gershenfeld present a similar method, demonstrating the implementation of AND/OR/

NOT gates, toggle flip-flop, and ripple counter using “bubble logic,” or the strategic 

introduction of bubbles into PDMS microchannels to achieve such logical behavior [5]. 

This, however, relies on the periodic introduction of signal bubbles using an active pump, 

something that would not be feasible in a paper substrate. Once again using PDMS 

substrate, Vestad and Mar demonstrate that any Boolean operation may be realized 

microfluidically if there exists method to vary the flow resistance within that substrate 

[6]. The paper notes that these basic Boolean functions “can be combined to form more 

complicated devices such as a half adder.” A novel method to implement a half-adder on 
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a microfluidic chip is demonstrated by Wang and Huang [7]. This novel method makes 

use of bioreactions, utilizing “a DNA strand as an operand.” The project detailed in this 

chapter posits that a binary half adder may be realized through much simpler means, 

using basic acid-base chemistry.  

4.2. EXPERIMENTAL METHODS 

4.2.1. Phenolphthalein as an Indicator of Basicity 

 Phenolphthalein owes its indicative nature to the Brønsted-Lowry model of acid-

base reactions. Because phenolphthalein is a weak acid, it tends to donate its hydronium 

cations (H+) to bases. When stripped of its hydronium cation, phenolphthalein assumes a 

pinkish hue. By simply observing the hue of the solution, one could easily determine the 

relative basicity of the overall solution. By breaching the pH threshold at which 
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increasing acidity increasing basicity

increasing acidity increasing basicity

(A)

(B)

Figure 4.4. (A) The dynamics of the “S” test area (not to scale), (B) the dynamics of the “C” test 
area (not to scale)



phenolphthalein turns pink, this indicative property may be exploited to design a binary 

half adder on a passive microfluidic platform. 

4.2.2. Implementing the Half-Adder 

 In the paper microfluidic design of the half adder, logic-0 and logic-1 are defined 

at the input as whether or not a solution is spotted onto the corresponding sample area, 

and at the output as either the absence or presence of color, respectively. A design must be 

introduced such that the “S” test area turns colored when only one input is spotted, but 

turns colorless when both inputs are spotted. Conversely, the “C” test area should turn 

colored only if both inputs are spotted. This may be achieved by letting the input solution 

be an equal parts cocktail of phenolphthalein indicator and weak acid (vinegar, 4% acetic 

acid), and presetting basic solutions onto the output areas. Knowing that phenolphthalein 

assumes a pinkish hue between a pH of around 8.2 to 13.0, the paper-based half adder 

will act, in theory, as follows. 

 The black dot in Figure 4.3A represents the initial concentration of the “S” test 

area. Each “jump” represents one aliquot of solution being added to the system. One 

jump depicts the (0,1) and (1,0) cases, while two jumps depicts the (1,1) case. The pink 

shaded area represents the indication region of phenolphthalein (keep in mind that the test 

area will not actually turn colored unless the input solution containing phenolphthalein is 

added to the system). Note that, for the “S” test area, the addition of one aliquot of 

solution will make the test area colored, while the addition of two aliquots will make the 
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test area clear. For the “S” test area, the addition of one aliquot of solution will render no 

color change in the test area, while the addition of two aliquots will make the test area 

colored. Before experimenting with paper substrate, tests were performed on a 

hydrophobic surface to create an ideal mixing scenario. 

4.3 RESULTS AND DISCUSSION (PRELIMINARY) 

 It was found, for ideal mixing, that 0.5 µL aliquots of input solution and a pre-

spotted 1.0 µL basic solution (NaOH with pH 13.5 for “S”) will realize the dynamics 

above (Figure 3.4). It is still unclear what the initial concentration of “C” would need to 
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Figure 4.5. A 1.0 µL solution of 13.5 NaOH acts as the pre-spotted output “S” area (top left), 
one aliquot of 0.5 µL of equal parts phenolphthalein and vinegar is added to the solution (top 
middle), producing color (top right). Another aliquot of input solution is added to the colored 
mixture (bottom left), producing a colorless mixture (bottom middle, right).



be, although it is presumed that [C] will need to be a very strong base. Furthermore, all 

tests were conducted under ideal mixing conditions; it is unclear what substantial effect 

realizing this design on paper substrate will be, given non-homogeneous capillary 

mixing. 

4.4 CONCLUDING REMARKS 

 The paper-based half adder design proposed here is subject to the following 

limitations. Firstly, the half-adder design proposed here is both single-use and single-

stage. This design cannot be reused due to its implementation on a passive paper medium, 

due to the inability to “clean” or “reset” the device once a solution propagates throughout 

the medium. The design cannot be used modularly, as some color due to phenolphthalein 

indicator propagation will present itself in succeeding stages, regardless of whether or not 

that stage is meant to produce that output. For example, if a stage one half adder produces 

a colored output, that colored output will propagate to a second stage half adder that is 

attached at its input to the output of the first. Unless there exists a chemical mechanism to 

control this unwanted propagation, a cascade design using multistage half adders of this 

type to realize more complex operations is infeasible. While the design proposed here is 

the first of its kind to be implemented on paper substrate, there is clearly more work to be 

done before a passive paper-based analytical device of meaningful, substantial computing 

capability can be realized on this platform. 
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CHAPTER 5. 

DIGITAL MICROFLUIDIC PAPER ANALYTICAL DEVICES 

5.1. INTRODUCTION 

 Conventional microfluidic paper analytical devices (µPADs) rely on the intrinsic 

capillary properties of the paper to achieve passive flow through pre-defined channels. 

The capabilities of such devices can be elevated through digital microfluidics (DMF). 

5.1.1. The Electrowetting-on-Dielectric Phenomenon in DMF Devices 

 The ability to control the affinity of a water droplet to a surface results in 

controlled droplet actuation for implementation in DMF devices. This chapter will 

address the mechanics of EWOD devices, droplet actuation on conventional PCB and 

paper substrates, and how the four droplet operations may be achieved through the use of 

a microcontroller. 

 Applying a high voltage to a droplet of water on a hydrophobic surface changes 

the affinity of the water to that surface, enabling on-demand toggling between 

hydrophobic and hydrophilic behavior. This phenomenon is called electrowetting-on-

dielectric (EWOD), and is the theory upon which most DMF devices operate. When 

EWOD is applied to an electrode array, the individual regions above each electrode may 

be programmed to act as a hydrophobic surface or hydrophilic surface. Activating 
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adjacent electrodes in quick succession can result in the digital relocation of the droplet 

over the array. 

 When no voltage potential is applied, the water droplet obeys the hydrophobic 

properties of the layer upon which it sits, and sits with contact angle greater than 90 

degrees. The contact angle, defined as the smallest angle between the surface vector of 

the plane upon which the droplet is sitting and the tangential vector to the interface of the 

droplet and hydrophobic surfaces, serves as a measure of hydrophobicity for a given 

material. 

 Generally speaking, a contact angle less than 90° is an indicator of hydrophilicity, 

while a contact angle greater than 90° is an indicator of hydrophobicity. When a positive, 

non-zero potential is introduced, a capacitance C is generated within the dielectric layer, 

causing the water droplet to act hydrophilic. The magnitude of this capacitance is given 

by 

"   

where "  is the absolute permittivity of the dielectric layer, A is the area of overlap 

between the two plates in square meters, and t is the thickness of the dielectric layer in 

C = ϵA
t

ϵ
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(4.1)

Figure 5.1. Water droplets with contact angles of (left) 120°, (middle) 90°, and (right) 50°



meters. The application of a high electric potential yields an excess of free energy at the 

interface of the water droplet and the dielectric layer. The system will tend to minimize 

this free energy by maximizing capacitance C. Since t and "  are constant, the system will 

resort to maximizing A, the area of overlap between the electrode and the water droplet, 

by moving the droplet above the center of the activated electrode. Opposite charges will 

align on either side of the dielectric layer, causing the droplet to spread and fill the region 

above the activated electrode. 

5.1.2. Electrowetting Theory 

 A theoretical analysis into the electrowetting phenomenon requires an 

examination of the forces at play in a three-phase environment, where liquid, gas, and 

solid meet. Mathematically, the phenomenon may be described in terms of 

thermodynamics. The total surface tension "  between the water droplet and hydrophobic 

surface can be expressed as the summation of mechanical and electrical components by 

"   

where "  is the total surface tension between the water droplet and hydrophobic surface 

at zero applied potential, C is the capacitance of the dielectric layer, and V is the applied 

potential. Consider the Young-Dupré relation describing the interfacial energies of a 

triphasic boundary region: 

"  

ϵ

γds

γds = γmech anical + γelectrical = γ0
ds − CV 2

2

γ0
ds

γsg − γsl = γlg cos θ
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(5.2)

(5.3)



where, for a region at which solid, liquid, and gas meet, "  is the interfacial surface 

tension between solid and gas, "  is the interfacial surface tension between solid and 

liquid, "  is the interfacial surface tension between liquid and gas, and "  is the contact 

angle. A graphical representation of the quantities involved in the Young-Dupré relation is 

shown in Figure 5.2. Rewriting this trivial relationship to the EWOD model: 

"    

where "  is the contact angle, "  is the interfacial surface tension between the water droplet 

and the ambient environment, and "  is the interfacial surface tension between the 

hydrophobic surface and ambient environment. Using Equations (5.2) and (5.4), an 

equivalency can be drawn: 

" . 

Redistributing, the contact angle "  may be expressed in terms of voltage: 

"    

γsg

γsl

γlg θ

γds = γd − γs cos θ

θ γd

γs

γ0
ds − CV 2

2 = γd − γs cos θ

θ

θ = cos−1(
γs − γ0

ds + CV2

2
γd )
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(5.5)

(5.6)

Figure 5.2. The triphasic boundary in the 
electrowetting model showing relevant quantities

(5.4)



leading to the trivial conclusion that the higher the voltage, the more wettable the surface, 

and the lower the contact angle. In short, the higher the voltage, the more hydrophilic the 

surface behaves. 

5.1.3. Contact Angle Saturation 

 While true for the purposes of an EWOD device, the conclusion is subject to a 

caveat: contact angle droplet actuation velocity is limited by contact angle [10]. As shown 

in Figure 5.3, regardless of applied voltage, the velocity of an actuated droplet 

asymptotically approaches the point at which its contact angle is 180 degrees, resulting in 

contact angle saturation [11]. If velocity control is desired, the surface should be treated 

with enough hydrophobic coating such that the contact angle resides within the greyed 

region labeled in Figure 5.3 as “most effective area.” 
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Figure 5.3. Saturation velocity vs. contact angle 
curves, controlled by applied actuation voltage



5.1.4. Droplet Operation Types 

The successful demonstration of smooth droplet actuation on a properly prepared 

hydrophobic surface will allow the realization of four different analytical fluidic 

operations: 

1. Transport - moving a droplet from one place to another 

2. Creation  - creating droplets of a prescribed volume from a reservoir 

3. Splitting -  splitting a droplet into two aliquots of equal volume 

4. Merging - merging two droplets into one 

5.1.5. DMF Device Configurations 

 DMF devices are traditionally designed in either an open-faced (Figure 5.4B) or 

sandwiched (Figure 5.4A) configuration. The two device configurations are identical, 

save for the addition of a ground electrode on the sandwich design. In both setups, the 

droplet scurries on top of a thin hydrophobic layer on an array of controlled, high voltage 

electrodes. In the sandwich configuration, a hydrophobic indium tin oxide- (ITO) coated 

glass acts as a ground electrode. 
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Figure 5.4. An EWOD device in sandwich (left) and open-faced (right) configurations



5.1.6. The DµPAD 

 In this chapter, a digital microfluidic paper analytical device (DµPAD), a novel 

platform merging paper and digital microfluidics, is proposed. A microfluidic paper 

analytical device enriched with DMF capabilities will enable: 

1. the realization different topologies for the design of paper microfluidic devices 

2. precise multiplexing and volume deposition of droplets 

3. higher speeds for the analysis process for paper microfluidic platforms 

4. management of time-sensitive reactions 

5.2. EXPERIMENTAL METHODS 

 For the sake of simplicity, the open-faced design (Figure 4.3B) was used for this 

project. The fabrication process consisted of two parts: creating the electrode array and 

the hydrophobic dielectric layer. 

5.2.1. Creating the Electrode Array 

Photolithographic PCB Etching 

 The electrode array over which the droplets would travel was created using the 

photolithography circuit board fabrication method. This PCB etching method requires  

access to presensitized positive photoresist printed circuit boards (PCBs), 1% sodium 

hydroxide (NaOH) as developer solution, acetone, deionized water, and a ferric chloride 

(FeCl) copper etching solution. A transparent mask of the desired electrode layout was 
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first created on Inkscape. The design was then printed onto transparent film with black 

ink using a conventional, high quality inkjet printer.  

 In a dark room, the protective covering on the photoresist layer was removed, and 

the transparent mask carefully placed onto the exposed area. A glass microscope slide 

was placed on top of the transparent film to ensure every part of the transparent mask was 

in contact with the presensitized area. The unit was exposed to a white single-watt 

lightbulb for seconds. The exposure process may be streamlined by using an ultraviolet 

(UV) flashlight instead of a bright light. If a UV light is used, the exposure time should 

be limited to no more than 30 seconds. Alternatively, computer paper may be used as the 

mask with an exposure time of 5 minutes; any longer, and the chip will become 

overexposed, and the design corrupted. Figure 5.6 details the photolithography exposure 

process. 
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Figure 5.5. The transparent mask used for PCB photoresist etching



 The PCB was then placed in a glass dish containing the sodium hydroxide 

developer solution, and was continuously perturbed until a clear pattern matching the 

mask appeared on the PCB surface. The PCB was then rinsed with deionized water, and 

placed in another dish containing ferric chloride copper etching solution, where it was 

continuously perturbed for 30 minutes to facilitate the etching process. Throughout 
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Figure 5.6. Configuration of the presensitized PCB, transparent 
mask, and glass slide during the exposure step of the 
photolithography process

Figure 5.7. The exposed PCB is developed via sodium hydroxide 
(NaOH) immersion



etching, the PCB board was checked periodically to ensure that all copper is removed, 

except that under the regions of the board still obscured by the photoresist layer. Once all 

copper has been removed, the PCB was rinsed with deionized water, and swabbed with 

acetone to remove the remaining photoresist. The completed PCB should be rinsed, 

polished, and dried as needed. 
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Figure 5.8. The photosensitized PCB is immersed in ferric chloride etching 
solution.

Figure 5.9. Acetone is swabbed on the etched board to remove the remaining photoresist film 
and complete the photolithography process.



Third Party PCB Etching 

 For DMF applications requiring the highly precise manipulation of nanofluidic 

aliquots, photolithography is not an ideal PCB milling method. Sufficiently narrow 

electrode pad spacing is essential to the performance of the DMF chip. Inkjet printers, 

even high quality ones, may not be able to provide the level of resolution needed to print 

transparent masks with narrow electrode spacing. PCBs were designed on EAGLE, and 

sent to a third-party PCB miller such as OSHPark for professional etching. 

5.2.2. Creating the Hydrophobic Dielectric Layer 

Using Rain-X 

 A hydrophobic layer may be achieved via commercial, off the shelf (COTS) 

hydrophobic auto spray. Parafilm M PM999 All-Purpose Laboratory Film was soaked in 

Rain-X, a commercially available water repellant spray, for 20 minutes. Silicone oil was 

then spread on the PCB containing the electrode array to maximize contact with the 

Parafilm and minimize unwanted air bubbles. The soaked Parafilm was then stretched 

over the PCB. A Q-tip cotton swab was used as a miniature roller to remove any trapped 

air bubbles between the film and the PCB. A heat gun was used to cure the hydrophobic 

spray onto the film, and the film onto the PCB. 
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Using FluoroPel PFC1601V 

 For more professional applications, FluoroPel, a hydrophobic and oleophobic 

coating from Cytonix, may be spin coated onto a thin glass surface to render it 

superhydrophobic. Parafilm and glass were placed into an ultrasonic bath containing 

water, isopropanol, and salt for 15 minutes. The glass was then placed in an 80°C oven to 

dry. The film was then placed onto a spin coater. 150 to 200 µL of FluoroPel (8cm x 4cm) 

was applied to the glass, and spun for 30 seconds at 3000 RPM. The spin-coated glass 

was left to cure on a hot plate at 80°C for 20 minutes, then at 150°C for 30 minutes. The 

glass was then left to dry before use. 

5.2.3. Designing the Electrode Array Circuitry 

 Each electrode pad is connected to a power MOSFET (BSP89) to toggle a 200 

VDC connection. This MOSFET model was chosen because of its logic-level rating up to 

voltages of 240 VDC, well beyond the 200 VDC found to actuate droplets. Additionally, 

their “logic-level” designation allows each transistor to be toggled via a 5V logic line 

from an Arduino, or other commercial microcontroller. Each MOSFET is connected in an 

“active-low” configuration, in series with a 180 kΩ pull-up resistor. A logic-0 (low) level 

sent by the microcontroller yields a 200 VDC potential at the electrode pad, while a 

logic-1  (high) level corresponds to a 0 VDC potential. 
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5.3 RESULTS AND DISCUSSION (PRELIMINARY) 

 The minimum voltage to achieve droplet actuation was found to be 200 VDC. It 

should be noted that this droplet actuation voltage is specific to the preparation method of 

the hydrophobic coating detailed above. The voltage may conceivably be decreased to 

levels as low as 11 VDC, given professional hydrophobic treatment [8, 9]. Simple droplet 

translation using a 200 VDC actuation voltage was observed using this topology. For 

more complex operations involving droplet splitting, an interleaved jagged electrode 

design should be adopted. 
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Figure 5.10. Custom PCB for DMF electrode array. (Design by Nico Pierson)



5.4 CONCLUDING REMARKS 

5.4.1. DMF-Enabled ELISA Microsystem 

 One of the potential applications of this technology of particular interest to 

analytical chemists is its potential integration with an enzyme-linked immunosorbent 

assay (ELISA) [1-7]. Electrodes can be embedded into the channels of a passive paper-

based ELISA to speed up time sensitive reactions, and facilitate accurate volume 

deposition. Additionally, DMF integration enables microfluidic chip designers to realize 

topologies not possible with a purely passive chip. A DMF electrode array enable 
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Figure 5.11. Circuit schematic of a DMF electrode array. Design by Nico Pierson.



“sandbox” chemical analyses to be performed. As such, experimenters may choose to 

configure the assay as an ELISA. In DMF ELISA applications, the use of high voltages to 

actuate droplets may fuel concerns about excess heat causing enzyme denaturation. 

Because of the very low internal resistance of each electrode pad, and the excellent 

insulation provided by the silicon substrate, there is no significant heat dissipation 

resulting from device use. The electrode array described here will pose no heat-related 

threat to the viability of enzymes. A temperature-controlled version of this assay may be 

implemented using a resistive electrode pad layer [12]. 

 The DMF research presented here is by no means complete, and is subject to the 

following limitations, all of which are slated to be addressed in future research work. 

Firstly, it is still unclear what effect, if any, alternating current (AC) has on droplet 

actuation, and whether it is perceivably superior to direct current (DC) when it comes to 

droplet actuation. While studies generally agree that an AC voltage source provides faster 

and more stable droplet actuation than a DC voltage source, the literature is careful to 

note that droplet actuation performance depends largely on the hydrophobic coating. The 

superiority of one source type over the other has yet to be tested on the assay described 

here. 
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